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Abstract

The properties are studied of a Galerkin numerical solution of integral equations for an assumed singularity
distribution or a velocity potential arising in potential flows around rigid bodies in incompressible aerodynamics,
acoustics and surface waves. The body boundary is approximated by a collection of panels and the integral equation is
averaged over each panel instead of being enforced at a 'collocation' point. For the resulting Galerkin synthesis the
matrix equation obtained for the source distribution is the exact transpose of the corresponding equation obtained for
the velocity potential on the body boundary, a property known to hold for the continuous operators. Moreover, the
integrated hydrodynamic forces experienced by the body are shown to be identically predicted by the source-distribu-
tion method or by directly solving for the velocity potential.

1. Introduction

The foundation of surface integral equations in potential flows goes back to the famous identity
of Green. Different formulations in terms of surface singularity distributions are derived by
Lamb [1], but it was only until about twenty years ago that the advent of electronic computers
permitted their use in practice. The pioneering work of Hess and Smith [2] is the first successful
numerical implementation of surface-singularity integral equations in a three-dimensional
problem. Numerous applications have since appeared in aerodynamics, acoustics, electromag-
netics and surface-wave flows.

Given our task to determine a potential function on the body boundary, two are the most
widely used forms of boundary integral equations. The 'source-distribution' method represents
the potential as a distribution of source singularities on the body boundary. Their strength is
determined by the solution of an integral equation on its surface by enforcing the relevant
boundary condition. This is hereafter assumed to be of the Neumann type. Alternatively, an
integral equation for the potential function itself can be obtained over the body boundary. This
is often called the 'Green' method. A rational derivation of both formulations is given in [1].

The simplest numerical approximation of either method requires the representation of the
body boundary by a collection of plane quadrilaterals, or panels, with the source distribution or
potential function itself assumed constant over their surface. The integral equations are
satisfied at 'collocation' points located on each panel, often selected to be at their centroid. The
continuous problem is reduced to a matrix equation with as many unknowns as the number of
panels used to approximate the body boundary, if symmetries are not accounted for. The
typical matrix element represents the hydrodynamic influence between a pair of panels. This
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synthesis in connection with the source-distribution method, has been implemented with
remarkable success by Hess and Smith [2] for incompressible non-lifting flows past three-di-
mensional bodies. The alternative Green method has been later advocated in aerodynamics by
Morino and Kuo [3] with similar success. Numerous applications of both methods are also
known in acoustics and surface-wave body interactions.

In the continuous problem, the two alternative integral equations have transpose kernels and
possess identical solutions for the potential function. A proof is given in Section 2. Neither
property is preserved in the discrete problem if the collocation method is implemented.
Computations suggest that for a sufficiently fine discretization, the solutions of the two
equations are 'close' but are not identical. The Galerkin method studied in the present paper
brings closer the discrete solutions of the source-distribution and Green methods. The integral
equation is averaged over the surface of each panel instead of being satisfied at a single
collocation point. This procedure restores one of the properties of the continuous problem, in
that it leads to matrix equations for the source-distribution and the Green methods which are
the exact transpose of each other. The respective solutions for the potential function are not
identical, but the integrated hydrodynamic forces on the body boundary are. Numerical
experiments indicate that the difference between the potential functions predicted by the two
methods when the Galerkin technique is used is smaller than the corresponding difference in
the collocation method. The proof of these properties is derived in Section 3.

The computational effort required in the implementation of the Galerkin technique and
aspects pertaining to its use in practice are discussed in Section 4.

2. The continuous problem

An inertial Cartesian coordinate system (x, y, z) and a rigid body fixed relative to it are
defined in Fig. 1.

x

D

Fig. I
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We are interested in determining the potential function on the surface S of the body,
subject to

x, + 0y+ 4 + k 2 0 =0 (2.1)

in the domain D, where k is a real constant and

a = v (2.2)

on the body boundary, where the normal vector n is of unit length and points out of the
domain D.

At large radial distances form the origin O a condition needs to be satisfied by the potential
4), specific to the problem being analysed. In the incompressible limit k = 0, if the potential
represents the disturbance due to an incident flow, it is subject to the condition

V - 0 (2.3)

at infinity. For compressible potential flows, the Helmholtz equation (2.1) models the linearized
time-harmonic problem for which a Sommerfeld radiation condition of outgoing waves is
necessary for the disturbance potential, 4) = Re(cp ei't), where w is the frequency of oscillation,

r1 2 ( aiksp ) -0 (2.4)

for large r = (x 2 +y 2 + 2 )1 /2 . If a free-surface flow is being analysed, with the calm free
surface assumed to be the z = 0 plane, k = 0 in (2.1) and the disturbance wave potential
satisfies

q) - k = 0 (2.5)

on z = 0. The relevant conditions at infinity are the Sommerfeld radiation condition with r
replaced by R = (x 2 +y 2 )1/2, and

vp - O0 (2.6)

as z tends to - oo. If additional rigid boundaries are present, the normal velocity needs to be
specified on their surface.

The solution of the boundary-value problems (2.1)-(2.6) by surface integral equations has
gained a lot of popularity in recent years. They lead to the discretization of a two-dimensional
surface, treat domains of infinite extent and are algorithmically easy to implement. Their
derivation originates from Green's theorem. Two formulations have received considerable
attention because they lead to the numerical solution of Fredholm integral equations of the
second kind which produce well-conditioned linear systems.

Historically, the 'source-distribution' method appears to have been analysed first, perhaps
because of its relation to the theory of gravitation. The potential is represented by a
distribution of sources and sinks on the body boundary in the form

q(x) =fsdo(k)G(x; ) (2.7)s~~~~~~~~~~~~~~~~~~~~~27

103



104 P.D. Sclavounos

The 'Green function' G(x; ) represents the potential at the field point x = (x, y, z) due to
a unit source located at the point = (, , ). It satisfies equations (2.1) and (2.2)-(2.6) with
the exception of the body boundary condition (2.2).

For incompressible three-dimensional flows, G is often referred to as the Rankine singularity
and is defined by

G(x; E) = - (2.8)

where r is the radial distance between the source and field points. For time-harmonic acoustic
flows,

1 eikr
G(x;) 41 - (2.9)

and for time-harmonic free-surface flows in infinite water depth

G(x; ) =- r + + ½i e ( o(kR) - s e Jo(sR) ds, (2.10)

where r' is the radial distance from the image of the source point with respect to the z = 0
plane to the field point x and JO is the Bessel function of the first kind of order zero. The
Green function (2.10) is derived in Wehausen and Laitone [4], together with its expression in
water of uniform finite depth. In time-harmonic flows the real part of the product of all
complex quantities with the time factor ei t' is understood. A set of efficient algorithms for the
evaluation of the Green function (2.10) has been recently developed and coded by Newman [5].

Enforcing the boundary condition (2.2) on the body boundary, assumed to possess a
continuous slope, leads to an integral equation for the source strength a(x) on its surface:

o(x) + do() aG (x; ) = V(x). (2.11)
anx

The pair of equations (2.7) and (2.11) define the 'source-distribution method'.
The alternative 'Green method' solves directly for the potential p(x) on the body boundary.

The corresponding integral equation is Green's identity itself:

a-G( + dt((t) x(t ) = fdEV(E)G(t; x). (2.12)

Values of p(x) with x in the fluid domain can be obtained from equation (2.12) by replacing
the leading coefficient -1/2 by -1, following the solution of (2.12) which determines its
values on the body boundary.

The solutions of the continuous equations (2.7), (2.11) and (2.12) for the velocity potential
qp(x) on the body boundary are identical. The proof is based on the existence and uniqueness of
the solution to the boundary-value problems (2.1)-(2.6), alternative formulations of which are
offered by the two transpose integral formulations. Care is needed to validate this statement in
the wave problems at a discrete set of 'resonant frequencies' which lead to the vanishing of the
Fredholm determinant of the respective integral equations. A comprehensive study of this
subject is carried out in the book by Colton and Kress [6].

An operator proof is given here of the identity of the two solutions based on the application
of Green's theorem. The intention is to motivate the discussion of the discrete problem where



A Galerkin technique for integral equations in potential flours

the continuous integral operators are approximated by matrices. Rewrite equations (2.7) and
(2.11) in the form

P = So, (2.13)

Ds = V, (2.14)

and equation (2.12) in the form

DGp = SV, (2.15)

where S, Ds, G is the operator notation of the respective integral representations, V = V(x) is
the normal velocity specified on the body boundary and ,p = cp(x) the desired potential. By
definition, the operators Ds and DG are the transpose of each other, thus

(2.16)

and by virtue of the symmetry of the Green function G(x; ) with respect to its arguments,

S = ST. (2.17)

A necessary condition for the solutions of (2.13)-(2.14) and (2.15) to be identical is obtained
by replacing V in the right-hand side of (2.15) by its definition in (2.14) and by operating on
both sides of (2.13) by DG. In operator form the result is

DGS = SDS. (2.18)

Transposing both sides of (2.18) produces the same equation, by virtue of (2.16) and (2.17).
To prove (2.18), we operate separately with the left- and right-hand side operators on an

arbitrary, sufficiently smooth, function f = f(x) defined on the body boundary. By definition,

(2.20)(DGS)f = +sd at n s+s 'f( ') G( E; ')'

and

(SDs)f= f dGC(x; ),d fdf(,) anG( ; t'), S+S' + S" a~~nt (2.21)

The leading terms in (2.11) and (2.12) have been replaced by the integrals over the surfaces
S, and Se' which are half spheres of small radius E and are illustrated in Fig. 2.

In the limit E - 0, the contributions from these surfaces tend to the leading terms of (2.11)
and (2.12) for the integrands which involve a normal derivative of the Green function, or vanish
when the integrands that involve the Green function itself. Define the potentials

(2.22)PI,(E) = G(; x),

· 2() = fs+s d ' f( (')G( ; t').

105
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Fig. 2

Both satisfy the field equation. Substituting (2.22)-(2.23) in (2.20) and (2.21) we obtain
respectively,

(DGS)f = f d an - 2(T) (2.24)

(SDs)f= f+ diko()) .2 (2.25)

The right-hand sides of (2.24), (2.25) are equal by virtue of Green's identity. This concludes
the proof of (2.18) which is a necessary condition for the identity of the solution of the
source-distribution and the Green methods. To establish that it is also sufficient, the operators
Ds,G must not be singular. The solution of (2.13)-(2.14) can be written in the form

ps = (SD-' ) V, (2.26)

and that of (2.15) in the form

PG = (D,' S)V. (2.27)

The equality

SD- 1 = DjS (2.28)

follows from (2.18) by pre-operating on both sides DG and post-operating by D5 .

3. The discrete problem

The discretization errors in the numerical solution of the integral equations of Section 2
originate from the approximation of the body surface by panels, the approximate representa-
tion of the source strength or velocity potential on the panels, the way in which the integral
equation is satisfied, quadrature errors in the evaluation of integrals of the Green function and
its derivatives over the panels.

Roundoff errors are also present in the set-up and solution of the resulting linear system on
a digital computer. The effect of the discretization and roundoff error on the solution is
proportional to their magnitude and the conditioning of the Fredholm integral equation of the
second kind being solved. This is generally good, as is illustrated by the small condition number
of the matrices approximating the integral equations and its weak dependence on the number
of panels that approximate the body surface.
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The selection of plane quadrilaterals with the unknown function assumed to be piecewise
constant over their surface is quite popular in production panel codes intended for the analysis
of bodies of general shape. The integral equation is satisfied at a set of 'collocation' points
often located at the panel centroids. Hess and Smith [2] pioneered the way in aerodynamics by
implementing this framework in connection with the source-distribution method and Morino
and Kuo [3] in connection with the Green method. Numerous applications have appeared since
in acoustics and wave-body interactions. The additional complication in these problems is the
presence of the irregular frequencies, and in the latter the complexity in the computation of the
wave Green function defined by (2.10).

The use of the source-distribution versus the Green method depends on a number of factors
specific to the problem of interest. Some of them are discussed in Section 4. The numerical
solutions obtained from the two methods by applying point collocation are not identical. They
are affected to a different extent by the discretization errors present in both methods. Their
difference can be reduced if the selection of a single collocation point is replaced by the
Galerkin technique which instead averages the integral equation over the surface of each panel.
The merits of the latter method, not shared by the collocation method, are:

1. the symmetry of the operator S and the transpose relation between the operators Ds and
DG are present in their discrete approximations by matrices;

2. the integrated hydrodynamic forces on the body obtained by the two methods are
identical.

Denote by si the surface of the i-th quadrilateral and by a, its area. Discretizing the pair of
equations (2.13)-(2.14) on the assumption that the source distribution is constant over the
surface of each panel, followed by an averaging with respect to the x-coordinate over their
surface, we obtain for the source-distribution method

I N
Pi = aE Sija, (3.1)

i j1

N

-- ½iai + E D)a = a V, i = 1 N, (3.2)
j=1

where the matrices Sij and D,(s) are defined by

Si = dx dG(x; ), (3.3)
si si

D) = jfdXf d t nx (3.4)
Si Si

The same procedure applied to the Green equation (2.15) leads to

N N

- ½qiai+ Di(G)q = SVj, i = 1 ..... N, (3,5)
j=l j=l

where

D/( )= dxf d aG(; x) 
Ij Si an (3.6)
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Matrices Sij and D(js)(G) are the discrete analogs of the integral operators defined in Section
2. It is easy to verify that

Si = Sii, (3.7)

resulting from the symmetry of the Green function with respect to its arguments.
Matrices D(s) and D(G) are the transpose of each other,

Djs) = D(G). (3.8)

The proof of (3.8) follows after the dummy variables in the double integral (3.6) and the
indices i and j are interchanged. Relations (3.7) and (3.8) are the discrete analogs of the
corresponding relations (2.17) and (2.16) in the continuous problem.

We turn our attention to the solutions for the velocity potentials obtained from the two
discrete formulations (3.1)-(3.4) and (3.5)-(3.6). Define

A = diag(a,), (3.9)

D = - A + D(G, (3.10)

and express the solution potential from the source-distribution method in the form

(s)=A - S(D T)-1Av, (3.10)

and from the Green method

T(G) = D-'Sv. (3.11)

For an arbitrary normal-velocity vector v, the two solutions would be identical if the
matrices multiplying v in (3.10) and (3.11) are equal, or equivalently if the matrix

W= AD- S (3.12)

is symmetric. The proof that W is symmetric did not prove possible. Numerical experiments for
a model problem in two dimensions with the Laplace equation satisfied in the fluid domain
indicate that W is 'almost symmetric', meaning that elements with symmetric locations relative
to the principle diagonal agree to 2-3 digits. A similar agreement was verified for the velocity
potential obtained from the two methods. The symmetry of W would be equivalent to the
condition (2.28) in the continuous problem. This can be seen if the matrix A is set equal to the
unit matrix, and by equating the remaining matrix product by its transpose.

In interactions of linear surface waves with bodies, the knowledge of the integrated
hydrodynamic pressure over the body wetted surface is often more interesting than the
knowledge of the velocity potential itself. The hydrodynamic force can be obtained by
integrating over the body surface the product of the panel area by the solution velocity
potential and the vector u which represents the 'direction' of the force we are interested to
evaluate. This operation is equivalent to the pre-multiplication of the vector velocity potential
by the vector (Au)T. The resulting hydrodynamic force obtained from the source distribution
method is given by

H(S) = uTWTv.
uv

(3.13)
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The same force predicted by the Green method takes the form

H(G) = uTWv (3.14)

Since the quantities H are scalars, we obtain by transposing (3.14) and interchanging the
vectors u and v:

HuS = HG . (3.15)

It follows that:

1. If u = v the hydrodynamic force predicted by the source-distribution method is identical
to the same force predicted by the Green method;

2. More generally, the hydrodynamic force in the v-direction due to forcing in the u-direction
predicted by one method is identical to the force in the u-direction due to forcing in the
v-direction predicted by the other.

The properties derived in the present section are not shared by the collocation method in
which the lack of the surface integral with respect to the x-coordinates prevents the symmetry
of matrix S and the transpose relation between the matrices D(S)(G).

4. Numerical results

This section presents numerical results for the source strength, velocity potential distribution
and added mass of an ellipse translating in an infinite fluid, documenting the performance of
the collocation and Galerkin methods. In Fig. 3, N equal increments of the angle a from 0 to
21r define an equal number of vertices on the ellipse surface spaced in cosine-like manner.
Straight segments are used to connect adjacent vertices. Denote by a the source strength
distribution and p the corresponding velocity potential (related by equation (2.7)) due to the
ellipse translation in the direction of its major axis with a unit velocity. Let n = (n1, n2) be the
inwards-pointing unit vector.

The exact continuous values for the velocity potential are given by

qp(a) -f(a) _ cos a, (4.1)
UB/2

and for the added-mass coefficient All,

All,Al = 7E2 (4.2)
pB 2 /4

U

Fig. 3
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Table 1. Source-strength, velocity potential distributions and added mass of an ellipse of eccentricity 0.5 discretized by
32 straight segments, using the collocation method.

i x-midpoint y-midpoint SIGMA PHI EXACT PHI ERROR (%)

1 0.990 0.049 1.573 -0.521 -0.495 5.18
2 0.952 0.144 1.353 - 0.499 - 0.476 4.89
3 0.878 0.235 1.064 - 0.459 -0.439 4.50
4 0.769 0.316 0.801 -0.400 -0.385 4.12
5 0.631 0.385 0.580 -0.328 -0.316 3.82
6 0.469 0.439 0.393 - 0.243 - 0.235 3.61
7 0.289 0.476 0.227 - 0.149 - 0.144 3.47
8 0.098 0.495 0.075 - 0.050 - 0.049 3.40
9 - 0.098 0.495 - 0.075 0.050 0.049 3.40

10 - 0.289 0.476 - 0.227 0.149 0.144 3.47
11 -0.469 0.439 -0.393 0.243 0.235 3.61
12 -0.631 0.385 -0.580 0.328 0.316 3.82
13 - 0.769 0.316 -0.801 0.400 0.385 4.12
14 -0.878 0.235 -1.064 0.459 0.439 4.50
15 - 0.952 0.144 - 1.353 0.499 0.476 4.89
16 - 0.990 0.049 - 1.573 0.521 0.495 5.18
17 - 0.990 - 0.049 -1.573 0.521 0.495 5.18
18 -0.952 -0.144 -1.353 0.499 0.476 4.89
19 -0.878 -0.235 -1.064 0.459 0.439 4.50
20 -0.769 -0.316 -0.801 0.400 0.385 4.12
21 - 0.631 - 0.385 - 0.580 0.328 0.316 3.82
22 -0.469 -0.439 -0.393 0.243 0.235 3.61
23 -0.289 -0.476 -0.227 0.149 0.144 3.47
24 - 0.098 - 0.495 - 0.075 0.050 0.049 3.40
25 0.098 -0.495 0.075 -0.050 -0.049 3.40
26 0.289 - 0.476 0.227 -0.149 - 0.144 3.47
27 0.469 - 0.439 0.393 - 0.243 - 0.235 3.61
28 0.631 - 0.385 0.580 - 0.328 - 0.316 3.82
29 0.769 -0.316 0.801 -0.400 -0.385 4.12
30 0.878 -0.235 1.064 -0.459 -0.439 4.50
31 0.952 -0.144 1.353 -0.499 -0.476 4.89
32 0.990 - 0.049 1.573 - 0.521 - 0.495 5.18

added mass = 0.8159
exact added mass = 0.7854
relative error = 3.89%

where is the ratio of the minor to the major ellipse axes. To test the performance of the
Galerkin technique, the discrete set of equations (3.2) has been solved for the source strength
and the velocity potential has been evaluated from equations (3.1). Table 1 presents predictions
from the collocation method of the source strength (SIGMA), velocity potential (PHI) and
errors relative to the exact velocity potential for an ellipse of eccentricity = 0.5 discretized by
32 segments. The exact values of the velocity potential are evaluated from (4.1) at half-incre-
ments of the angle a. The relative error for the velocity potential ranges from 3-5%. The
corresponding predictions of the Galerkin method are presented in Table 2 for the same
number of segments. The errors in the velocity potential predictions now range from 0.18-0.75%,
and for the added mass it is equal to - 0.14%.

Added-mass predictions for ellipses of varying eccentricity ratios and number of segments
are presented in Table 3 for the collocation, and Table 4 for the Galerkin method. It is here
reminded that the Galerkin added masses obtained by utilizing the source-distribution and the
Green methods are identical.

The numerical results presented in Tables 1-4 have been obtained by Barnel [7]. In both
methods, all integrals of the Green function log r and its normal derivative over the segments
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Table 2. Source-strength, velocity potential distributions and added mass of an ellipse of eccentricity 0.5 discretized by
32 straight segments, using the Galerkin method.

i x-midpoint y-midpoint SIGMA PHI EXACT PHI ERROR (%)

1 0.990 0.049 1.491 - 0.499 - 0.495 0.75
2 0.952 0.144 1.289 - 0.479 - 0.476 0.60
3 0.878 0.235 1.024 - 0.441 - 0.439 0.44
4 0.769 0.316 0.779 - 0.386 - 0.385 0.33
5 0.631 0.385 0.568 - 0.316 - 0.316 0.26
6 0.469 0.439 0.386 - 0.235 - 0.235 0.21
7 0.289 0.476 0.224 -0.145 -0.144 0.19
8 0.098 0.495 0.074 -0.049 -0.049 0.18
9 - 0.098 0.495 - 0.074 0.049 0.049 0.18

10 - 0.289 0.476 - 0.224 0.145 0.144 0.19
11 - 0.469 0.439 -0.386 0.235 0.235 0.21
12 - 0.631 0.385 - 0.568 0.316 0.316 0.26
13 - 0.769 0.316 - 0.779 0.386 0.385 0.33
14 - 0.878 0.235 -1.024 0.441 0.439 0.44
15 - 0.952 0.144 -1.289 0.479 0.476 0.60
16 -0.990 0.049 -1.491 0.499 0.495 0.75
17 -0.990 -0.049 -1.491 0.499 0.495 0.75
18 -0.952 -0.144 -1.289 0.479 0.476 0.60
19 - 0.878 - 0.235 -1.024 0.441 0.439 0.44
20 -0.769 -0.316 -0.779 0.386 0.385 0.33
21 -0.631 -0.385 - 0.568 0.316 0.316 0.26
22 - 0.469 - 0.439 - 0.386 0.235 0.235 0.21
23 -0.289 -0.476 -0.224 0.145 0.144 0.19
24 -0.098 -0.495 - 0.074 0.049 0.049 0.18
25 0.098 -0.495 0.074 -0.049 -0.049 0.18
26 0.289 -0.476 0.224 -0.145 -0.144 0.19
27 0.469 - 0.439 0.386 - 0.235 - 0.235 0.21
28 0.631 -0.385 0.568 -0.316 -0.316 0.26
29 0.769 -0.316 0.779 -0.386 -0.385 0.33
30 0.787 - 0.235 1.024 - 0.441 - 0.439 0.44
31 0.952 - 0.144 1.289 - 0.479 - 0.476 0.60
32 0.990 - 0.049 1.491 - 0.499 - 0.495 0.75

added mass = 0.7843
exact added mass = 0.7854
relative error = -0.14%

have been evaluated in closed form. Consequently, only discretization errors due to the
approximation of the ellipse by straight segments and the representation of the unknown source
strength by a piecewise-constant variation are present. Roundoff errors in the solution of the
linear systems are negligible for the number of segments used in these examples. It may be
concluded that the use of the Galerkin method leads to a substantial decrease of discretization
errors, here typically by a factor of ten. More recent results for two-dimensional hydrofoil flows
indicate a similar improvement in accuracy relative to the collocation method.

In three dimensions the Galerkin method has been used by Breit, Newman and Sclavounos
[8] in the evaluation of the complex-impedance hydrodynamic coefficients of a surface-piercing
spheroid and a truncated vertical cylinder approximated by plane quadrilaterals. An improve-
ment in accuracy relative to the collocation method has been observed, but a more modest one
in comparison to that typically observed in two dimensions. In three dimensions the double
Galerkin integrals of the Rankine source (2.8) and both single and double integrals of the wave
Green function (2.10) and its derivatives over plane quadrilaterals do not possess closed-form
expressions, and a four-node surface Gauss quadrature was utilized. In all cases tested the
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Table 3. Added mass of ellipses for eccentricities ranging from 0.1 to 1.0 discretized with 16, 32 and 48 segments using
the collocation method.

n f ADDED MASS EXACT ADDED MASS ERROR (%)

16 0.10 0.033 0.031 4.81
32 0.10 0.033 0.031 4.01
48 0.10 0.032 0.031 2.86
16 0.20 0.134 0.126 6.69
32 0.20 0.131 0.126 4.04
48 0.20 0.129 0.126 2.77
16 0.30 0.302 0.283 6.92
32 0.30 0.294 0.283 3.96
48 0.30 0.290 0.283 2.73
16 0.40 0.537 0.503 6.88
32 0.40 0.522 0.503 3.91
48 0.40 0.516 0.503 2.71
16 0.50 0.839 0.785 6.81
32 0.50 0.816 0.785 3.89
48 0.50 0.807 0.785 2.69
16 0.60 1.175 1.131 3.87
48 0.60 1.161 1.131 2.69
16 0.70 1.643 1.539 6.73
32 0.70 1.599 1.539 3.87
48 0.70 1.581 1.539 2.68
16 0.80 2.146 2.011 6.72
32 0.80 2.088 2.011 3.86
48 0.80 2.065 2.011 2.68
16 0.90 2.715 2.545 6.71
32 0.90 2.643 2.545 3.86
48 0.90 2.613 2.545 2.68
16 1.00 3.352 3.142 6.71
32 1.00 3.263 3.142 3.86
48 1.00 3.226 3.142 2.68

quadrature errors were found to be small relative to the discretization errors associated with the
approximation of the geometry and the unknown velocity potential or source distributions.

5. Application of the Galerkin method

The computational effort required for the evaluation of the Galerkin matrices is not substan-
tially larger than the corresponding effort in the collocation method. The integral with respect
to the x-coordinate can be evaluated by quadrature. When the panels i and j are located at a
distance from each other comparable to their typical dimension, the variation of the integral
over the j-th panel, being function of the x-coordinate, is in principle rapid as the point x spans
the area of the i-th panel. It is due to the singular behaviour of all Green functions defined in
Section 2. Consequently, more than one quadrature points are likely to be necessary over the
surface of the i-th panel in the evaluation of the double integrals (3.3) and (3.4), leading to an
increase in the computational effort relative to the collocation method.

When the panels i and j are at large a distance from each other relative to their typical
dimension, the variation of the Green function G(x; ) and its derivatives over their surfaces s i
and s is gradual. A single-node quadrature is adequate in this case for the evaluation of the
double integrals, with the node located on the panel centroid. Thus, a single evaluation of the
Green function and its derivatives is necessary for each element of the matrices S and D, as in
the collocation method. If the effort in the evaluation of higher derivatives of the Green
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Table 4. Added mass of ellipses for eccentricities ranging from 0.1 to 1.0 discretized with 16, 32 and 48 segments using
the Galerkin method.

n f

16 0.10
32 0.10
48 0.10
16 0.20
32 0.20
48 0.20
16 0.30
32 0.30
48 0.30
16 0.40
32 0.40
48 0.40
16 0.50
32 0.50
48 0.50
16 0.60
32 0.60
48 0.60
16 0.70
32 0.70
48 0.70
16 0.80
32 0.80
48 0.80
16 0.90
32 0.90
48 0.90
16 1.00
32 1.00
48 1.00

ADDED MASS

0.031
0.031
0.031
0.125
0.125
0.126
0.281
0.282
0.283
0.500
0.502
0.502
0.781
0.784
0.785
1.125
1.129
1.130
1.532
1.537
1.538
2.000
2.008
2.009
2.532
2.541
2.543
3.126
3.137
3.140

EXACT ADDED MASS

0.031
0.031
0.031
0.126
0.126
0.126
0.283
0.283
0.283
0.503
0.503
0.503
0.785
0.785
0.785
1.131
1.131
1.131
1.539
1.539
1.539
2.011
2.011
2.011
2.545
2.545
2.545
3.142
3.142
3.142

function is small, they can be used in the single-node integration formula to decrease the
quadrature error by including higher-order terms in the Taylor series expansion of the
integrand with respect to the x and variables around the centroids of the i-th and jth panels
respectively. Recurrence relations with respect to the derivative order exist for the Green
functions defined in Section 2. The number of elements in the N X N Galerkin matrices S and
G which correspond to 'distant' panels, grows like N2 while the number of elements which
correspond to 'neighbouring' panels grows like N. Thus for large N, the computational effort in
the set-up of the collocation and the Galerkin matrices is comparable. To this we must add the
effort required for the solution of the linear system, which is the same for both methods and,
unless an iterative solution of the linear system is available, it dominates the total computa-
tional effort for large N.

The Galerkin technique may be attractive in applications where the solutions of the
source-distribution and the Green problems are both useful. For example, the velocity potential
may be desired in order to evaluate the local acoustic pressure field or the local wave load on
an offshore structure. In this case the solution of the Green equation is more efficient since the
left and right-hand sides of equation (3.5) can be set up simultaneously, circumventing the need
to generate and store the matrix S. This is necessary in the source-distribution method, unless
the matrices S and D are evaluated separately which may be uneconomical. The velocity field,
on the other hand, is desired in the evaluation of the pressure gradient on a lifting surface or of
the wave-drift forces on a floating structure. In such cases, the source-distribution method

ERROR (%)

- 0.83
-0.16
-0.07
-0.60
-0.14
- 0.07
- 0.53
- 0.14
- 0.07
- 0.51
-0.14
- 0.07
- 0.50
- 0.14
- 0.07
-0.51
-0.14
- 0.07
-0.51
- 0.14
- 0.07
-0.51
-0.14
- 0.07
-0.51
-0.14
- 0.07
-0.51
-0.14
- 0.07
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appears to be more attractive. Knowledge of the source strength permits the differentiation of
equation (3.1) to obtain the flow velocities by utilizing single derivatives of the Green function.
The evaluation of double derivatives is necessary if the Green equation is used. The Galerkin
technique permits the transition from the source-distribution to the Green method by simply
transposing the solution matrix and using the proper right-hand side vector.
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